Search results for "scattering [p nucleus]"
showing 10 items of 198 documents
High quality epitaxial Mn 2 Au (001) thin films grown by molecular beam epitaxy
2020
The recently discovered phenomenon of Neel spin–orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependen…
Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry
2000
A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…
PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration
2017
Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …
Experimental Evidence for an Attractive p-φ Interaction
2021
Physical review letters 127(17), 172301 (2021). doi:10.1103/PhysRevLett.127.172301
First study of the two-body scattering involving charm hadrons
2022
Physical review / D 106(5), 052010 (2022). doi:10.1103/PhysRevD.106.052010
VECTOR-BARYON DYNAMICS IN γN → K0Σ REACTIONS
2014
A coupled channel model for the interaction of vector mesons with baryons is employed in the study of the γp → K0Σ+ reaction around the K*Λ and K*Σ thresholds, where the recent CBELSA/TAPS cross section shows a sudden drop and the differential cross section experiences a transition from a forward-peaked distribution to a flat one. A delicate interference between amplitudes having K*Λ and K*Σ intermediate states is found. The sharp downfall is dictated by the presence of a N* resonance produced by our model, a feature that we have employed to infer its properties. Predictions for the complementary γn → K0Σ0 reaction are also given.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
2015
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy…
Determining a Random Schrödinger Operator : Both Potential and Source are Random
2020
We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…
Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation
2019
International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.
Explicit Characterization of Inclusions in Electrical Impedance Tomography
2001
In electrical impedance tomography one seeks to recover the spatial conductivity distribution inside a body from knowledge of the Neumann--Dirichlet map. In many practically relevant situations the conductivity is smooth apart from some inhomogeneities where the conductivity jumps to a higher or lower value. An explicit characterization of these inclusions is developed in this paper. To this end a class of dipole-like indicator functions is introduced, for which one has to check whether their boundary values are contained in the range of an operator determined by the measured Neumann--Dirichlet map. It is shown that this holds true if and only if the dipole singularity lies inside the inhom…